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PrCblen

The central problem in computer-assisted instruction is the trmnsl~ation
of instructional practice, whic-h is fedrly vague, into w~uputer programs,
which &--a quite precise. If effective procedurea are iwuocpbic With
computer programs, this prabl~a isonelf of translating instructional prac-
tice intn effective procedures. Models of the learner stay, be essential
in translating instruction. into effictiva procedures.

Purpose and Approach

This rimport reviws the expl-Icit 'age of models of the learner based on
qvmanti tative models of %emory, regmetsiorn models of perforarice, autozaton
modelfi of performance, and artificial Intelligence.

Moesof hnoy Four quantitative iodels of memory hav-e been inv"-Y-i
gtafor their utility in modeling learners In conputez-assisted In-

strtuct-ion: the incremntal model, the one-element model, thi random-
trial increments model, and mlodels based on Ceneral Forgef-ing Theory.
TIwitzuctional strategies based on the increnwntal model ave tx.,4zd
Mra~gas insensitive because they c:oncern the nmober rather that the out-
comes of' presentations. Strategies based ca the one-element w', Ai, the
randvm.trial increments model, and a General Forgetting Theory ire
terzed re~pouse sensitive because they take into account the o( .ccom"
of presentations. General Forgetting Theory seets a noeed for a tize-
dependent forgetting process in modeling learners' Lziwledso of items.
Hiowever, only locally optimal instiructional strategies have been derive I
from General Forgetting Theory. Global optf"riiation strat,4~iez that
mazimile gain over the entire .4notructional treatment tavir been derived
from the incremental, one-element, and rcndorm-trial increz ents aodels.

Rgrsso Moes.Dspite constderable use of regression vodels to
describe student progress in coupatet-assIsted Instruction, mtly two

16 examples of these models used to dyaamic&Uly predict and prescribe
instruction for individual students were found. Predictive control
based on regression models of performance using such !.ndependezit varl-
ables as percent correct, response latency,, and measures of state and
trait anxiety has been used successfully to teach concepts &asociated
with heart disease. A theory of student progress derived ftom a sto.-
chastic differential equation~ may, be applicable to a variety of curric-
ulums and has provided very precise predicrive control in ezperimints
on computer-assisted Instruction in arithmetic computation. Alt'hough
regreasion models are well understood and easyj to apply and modify,
they are sufficiently powerful to satisfy nany more applications than
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4av" ye:,- bean attempted. Through the use of regressio1u models, 002!-
puter-eassisted instruction, which can dyiuan'..clly adjust to0 within-
ceurse performance as veil as entering coutse measuzes, nay realize
the intuitive promire of aptittude-treatuent Interaction.

Automaton 2kodels. Miat computers do and what effectivs, procedures are
may be amot ea.-ily deectibed in terms of aixtor-ata theory, and it is rea-
sonable to turn to automata thotory for modls of the learner that =wy

be easily represented by etmputer wAt used in cormputer-assisted inst ruc-
tion. The rower of automaton atode~ls can be seen In contrast with models

F- based on mgreasion. However, regression modeln are applied to groun¶ed
data~. No matter how a-~quate they are for awny applications or bow
accurately they predict performance, they do not postulate the specificI zlgoritheic processes that students use in solving problemls. On the other
hand, analysis of these -ilgorithaa is a natural, integral aspect of au-
tonacon iacels. Use of these models is Just beginning, but tiiey have
already demonstrated their utility in describing the algorithmic proce85~s
used by students in solving arithmetic problems.

lidels as Artificial Intelligence. Several ccaputer-assisted instr-uctiotv
projects have been based on models of such formally structured subJect
mat;er as mathematical logic, electronic troublemboocting, and computer
programaing. Advo.itional efforts are being, made to extend this approach
to less formal subiect matter such as South American geography and history
of the Americaa Civil War. All these efforts attempt t:o devise adequate
models of tk~e learner by starting with an adequate model of some subject
matter and "shading it in" as the learner masters given atipects of it.
Another approach is to model human belief systems directly. This latter
approach has not betn applied to computer-assisted instructi)n~, ti'. fairly
aaquy*te models of belief eystems have been devised for several levels
of paxantda and for a "iCold Warrlor." Given all that must be~ represented
se discrq--e facts and all the interrelations between thise facts, adequate

* ~represent&UJon of a human belief system may be unattainable. However,
a balief 39yatem for an instructional subject may be simpler and more

* amenable to computer represcatation.

Conclusion

Implici1c in. O~e review is the assumption that explicit representations
of the learner should be applied in. computer-assisted instruction,
Instruction uoes: not merely deposit information on blank slates. Students
to!A-prisa complex. dynamic systems that are altered by instruction. The
more precisely these student/systems are explicated, the better instruction
can Ite devised, modified, evaluated, and individualized. Moreover, the
nppro4ches to instruction discussed by the review use to advantage the
paver, speed, and accuracy of computers, and, in doing so, illustrate
unique and valuable capabilities of coMputers applied to instruction.
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INTRODUCTION

Problem

"7he central pr:blem in computer-assisted instruction (CAI) is the trans-
lation of irstructional practice, which is fairly vague, to computer programs,
which are quite precise. If effective procedures are isomorphic with computer
programs, this problem is one of translating instructional practice into
effective procedures. Turing (1936) argued that an-,' procedure prugrammed
for a computer is computable and effective, and he did not, current apocrypha
to the contrary, argue the converse of this statement. However, in agreement
with Minskv (1967) and uthers, this report assumes that any procedure that
is effective can be programmed for a computer.

.Models of the learner may be essential in translating Instruction to
effectrve procedures. In a sense, all CAI includes these models either im-
plicitly or explicitly. In a linear sequence of curriculum items, a student
is modeled by that sequence and by his position in it. In a non-linear,
branching sequence, a student is modeled by the bra:iching structure and, again,
by his position in it. This suggests that content analysis of curriculum
and models of the learner are dependent and inextricable, but this suggestion
will not be argued here.

Purpose and Approach

This report reviews the explicit use of models of the learner based
on quantitative models of memory, regression models of performance, autom-
aton models of performance, and artificial intelligence.

. . . .. . .



RESULTS AND DISCLUSSION

It is obviously beyond the scope of this paper to present a comprehensive
analvsis of the use of models in psychology. It should be sufficient to
say that the use of models has been a.. integral aspect of psychology for
a long time. The use of quantitative, or "mathematical," mo,' 'is, which lead
directly to effective crzocedures, has occurred more recently. beginning
with the search for a universal, analytic learning function by Robertson,
Thurstone, Woodruo:. and others, it is possible to trace a gradually Increasing
emphasis on systematic specification of the elementary units underlyixg learn-
ing. full's Principles of Behavior (1943) is a landmark in this regard.
Hull's postulates, which were designed to encompass the major aspects of
learning, initiated considerable empirical research. However, it is not
possible to make more than a few quantitative predictions of behavior from
these postulates. Be that as it may, the work of Hull, Lewin, Tolman, and
others empha-ized the importance of quantitative theory In psychology and
set the stage for the more recent work of Atkinson, Estes, Dice, Suppes,
and many others.

Considering the current status of quantitative models, there appears to
be a trade-off between the precision and the breadth and/cr complexity of
the phenomena they account for. This report discusses models of the lean.er
in order of increasing complexity, moving from quantitative models applied
in simple lFarning situations to more qualitative models applied in more
complex situations.

Models of Lemorv

Although earlier work can be cited (e.g., Karush and Dear, 196&; Matheson,
1964), a 1966 paper by Groen and Atkinson appears to have been seminal in
the application of models of memory to instruction. Groen and Atkinson tied
the application of quantitative learning models to the optimization of inscruc-
tion. The prototypal instructional situation addressed by this and similar
papers was first presented by Suppes' (1964) analysis of learning a list of
items. Roughly, a set of M items is to be learned in a fixed number, S,
of sessions. Gn each session a subset of the M items is presented for study.
The optimization problem is to maximize performance on a posttest of all M
items by appropriate selection--in size and/or content--of the subsets subject
to the constraints piesented by M and S. This optimization problem is general-
ly solved by the particular model of memory chosen to represent the learner,
and discussions of optimized instructiL7 would be academic were it not for
the use of computers in instruction. These discussions typically start with
the single-operator, or incremental, model (Bush and Sternberg, 1959) and
the all-or-none, or one-element model (Estes, 1960). These two models have
become proLotypal and serve as standard straw-men in the develop=ent of learn-
ing models.

Preceding page blank



The incremental model assumes that the probability of an error on item
aon the n+l presentaLion (q, n+,) is

1,,n+l faq.,n where 0 < a < 1.

in other words, the probability of an error on an Item is reducet by a constant
amount every time the item is presented, no matter what happens on the presen-
tation. The magnitude of the constant amount is estimated by a parameter,
a, that is uniquely determined for each learner.

The one-element model assumes thit, frr each student, each item to be
presented is in one of two states--learned or unlearned. When an unlearned
item Is presented, it moves into the learned state with probability c. Spe-
cifically, the probability of ai. error on item I on the n+1 presentation
(q 1 ~n 1 ) is

q q ,n with probability 1-c

1 0 with probability c.

In other words, the probability of an error on an item remains constant no
matter how many times it is presented until a correct response to the item
is made, at which time the probability of an error on the item immediately
drops to zero and remains there forever. The probability of a correct response
is estimated by a parameter, c, that is uniquely determined for each learner.

Given their simplicity, it is not surpr.sing that these models have become
straw-men or even whipping boys. What is surprising is the large amount of
experimental data they account for. There are many experimental situations
in which these models adequately describe the phenomena observed.

Both the incremental and the one-element models predict the same learning
curve for a given set of items. As Calfee (1970) pointcd out, they differ
in their assumptions about underlying processes, and these differences hinge
on the response-dependent character of the one-element model. The conditional
probability of an error on presentatlrn -k+l of item i, given an error on
tri3l n, is

P(qiIn+l lqin) = anq

for the incremental model and

P(qj n+1 Iqin) - (l-c)q.,

for the one-element model. Notably, the latter probability is not a function
of trial ntmber; learning either occurs or does not occur solely as a function
of the parameter c in the one-element model. For thiz reason Groen and Atkinson
termed instructional strategies based on the incremental model as response



insensitive because they concern the number rather than the ootcoimes of tbl
presentations, and strategies based on the one-elsement model as response
.sensitive because they consider outcomes of item presentations.

Dear, Silberman, Estavan, and Atkinson (1967) reported the first atpli-
cation of a quantitative memory model to CAI. They used a presencation strategy
based on the one-element model to teach paired-associates under computer
control. Although their strategy wa; theoretically optimal, it required massed
presentations and produced poor results relative to thclue obratn*ed from a
standard presentaton schedule Lhat required -_i4strib:•ted presentations. T!-e
point to be emphasized here is that a theoretically optimal procedu2re fmn.
not be the best instructional procedure available. An optimal •',_-.re
attempts to maximize some outcomes subject to some constraints. , utco.-•
and constraints may comprise a model of an instructional situat1'ran ani, tu
the extent that this model is accurate, it will produce superior Tsh ci•neJ
outcomes. The Dear et al. study tested both the adequacy of an ontimal
procedure and its underlying instructional model; thus, it provided imip-.rcant
feedback both to those concerned with instructional procedures and with :heorie6
of human learning. Greeno (1964) and Groen and Atkinson (1966) had suggested
that the one-element model may :ail badly in accounting for learning under
massed presentation, and it was reasonable to avoid massed presentation in
subsequent tests of the Dear et al. strategy.

Lorton (1973) compared a modified form of the Dear et al. strategy with
a standard strategy based on the incremental model in presenting QA! in spel-
ling to disadvantages 4th through 6th grade students. Lorton's modification
disallowed the presentation of any item more than once in any session. His
results indicated a lesser error rate during training for the strategy based
on the incremental model, but significantly better posttest performance for
the strategy based on the one-element model. Using the modified Dear et al.
strategy, then, Lorton demonstrated the anticipated superiority for a response
sensitive, optimal strategy in a posttreatment measure of achievement.

Laubsch (1970) took a step further and applied a presentation strategy
based on the random-trial increments model (Norman, 1964) to teach Swahili
vocabulary to native speakers of Engllsh'. The random-trial increments model
includes the features of both the incremental and one-element models by as-
suming that the probability of an error on item i on the n+l presentation

is

Sqi n with probability 1-c

aqi n with probability c.

It shoulc be "ioted that, if c < 1, a strategy based on the random trial
increments model will be response sensitive in that it will have to attend

1Alti.ough Lorton's study was documented after Laubsch's, it was designed and
run earlier.
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to the outcomes of prior presentations. Laubsch's study was motivated by
the consideration that the assumptions of subject and item homogeneity in
strategies based on the one-element model are untenable in most practical

situations. The review by Atkiason and Paulson (1972) emphasized that an
essential contribution of Laubsch's investigation was the development of
a strategy based on the random-trial increments model to allow the parameters
of the model to vary with different students and different items. Laubsch
concluded that although significant improvements in learning can be achieved
by applying optimal presentation strategies based on models of memory, these
models are inadequate in an important aspect: they do not include a time-
dependent forgetting process.

This inadequacy was directly addressed in a paper by Paulson (1973), who
discussed the implications of the General Forgetting Theory formulated by
Rumelbart (e.g., 1967) for pres-entation strategies based on different vari-
eties of the one-element model. The General Forgetting Theory can be briefly
described as assuming that a subject at any given time is in one of three
possible states of learning with respect to any item: (1) an unlearned state
(U), (2) a short-term retention state (S), or (3) a long-term retention state
(L). As formulated by Paulson, when an item is presented, transitions between
states occur according to the following stochastic matrix:

Probability of a corre-.t

State on trial t+l response given the state

L S U

L T 0 0 F

State on S 4-c 0ni

t ri q_ t U a b 1-a-b g

In other words, if an item is in the learned state•, it stays there forever.
If an item is in the short-term state and is presented, it may either change
to the learned state or remain in the short-term state. If at. item is in
the unlearned state, it may change either to the learned or short-term state
or it may remain in the unlearned state. The probability of a correct response
to an item in the learned or short-term state is one, while the probability
of a correct answer to an item in the unlearned state is equal to some guesing
parameter.

Under the General Frgetting Theory, it is also necessary to consider
items that are not presented on a trial. Transitions between states for
these items occur according to the following matrix:

6
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State on trial t+1

L S U

L 1 0 0

State on S 0 1-f f

trial t U 0 0 1

In other words, only items in the short-term state may change state during
a trial in which they are not presented; they may either stay in the short-term
state or drop back to the unlearned state. If we are willing to think of
time measured by trials or presentations rather than minutes, these transitions
answer Laubsch's call for a time-dependent forgetting process.

Despite the inclusion of a forgetting process, presentation strategies
based on the family of midels represented by the General Forgetting Thecry
inccrporate a serious linitation. With respect to this limitation, two types
of optimal strategies can be distinguished: (1) local strategies that maximize
imediate gain, and (2) global strategies that maximize gain over the course
of the instructional treatment. Paulson demonstrated that the difficulty
in applying the General Forgetting Theory to the derivation of globally
optimal strategies is that these strategies require looking more than one
trial chead in all cases of interest. The tractability of the one-element
model in deriving a globally optimal strategy is a fortunate exception to
a general rule of intractability. Paulson discussed several locally optimal
strategies based ou the General Forgetting Theory that look only one trial
ahead. Thiese strategies are mathematically manageable and intuitively rea-
sonable, but they were all shown not to bh globally optimal.

It is important to note that the applica:ion of quantitative models of
rmemory is not a straightforward procesc of selecting the most adequate model
available, grinding thrcugh the necessary mathematics to derive an optimal
prescntation strategy, and programming the strategy on the local CAI system.
The verification task for selecting the most adequate available model is
undecidable. The mathematics for demonstrating that a selected -trategy is
optimal may be prohibitively difficult. The selected strategy may not be
implementable on a computer in general or on the particular operating system
available. A global, quantitative theory for deciding these problems may
someday be developed, but, in the interim, selection cf optimal presentation
strategies for CAI must necessarily depend on the biases of concerned individ-
uals and on the results of empirical investigations.

7
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The li-itations of the learning situations to which these quantitative
models can be applied were mentioned earlier. Considering these limitations,
the number of remain!ng, unresolved issues is especially notable. It can
hardly be overemphasized that we are just beginning to apply these models
to instruction.

Regression Models of Performance

There has been considerable use of regression models to describe the
progress of students in CA, (e.g., Searle, Lorton, and Suppes, 1973; Suppes,
Fletcher, Zanotti, Lorton, and Searle, 1973). Such applications are analogous
to the use of production functions in economic theory and can be used for
both the optimization and the evaluation of instruction (Fletcher and iamison,
1973). The use of regression models to predict and prescribe instruction
dynau*z'ally for individual students has been less common. Two examples of
this type of application are represented by the work of Rivers (1972) and
Suppes, Fletcher, and Zanotti (1975a, 1975b).

Rivers documented an application of multiple linear regression to an
elementary course in heart disease. He identified nine concepts taught in
the course and, based on existing student performance, devised linear regres-
sion models for posttest performance on che concepts, given cummulative course
performance up to and including the presentation of each concept. After
adjustments, regression models that predicted posttest performance were devised
for seven points in the program, i.e., after presentation of each of seven
concepts. A student could be given remedial work after finishing a concept
and before proceeding in the course if his posttest performance was predicted
to be suffIciently low by the relevant regression model. These models in-
cluded such independent variables as percentages of correct responses, response
latency, and performance on state and trait anxiety scales.

Rivers compared the posttest performance of four treatment groups.
The first group received remedial material as indicated by the regression
models; the second received all prepared remedial material; the third received
no remedial material; and the fourth received remediation at the option of
individual. students. There were no significant differences in posttest per-
formance between the regrescion model group and the all-remediation group,
but both these groups performed significantly better on the posttest than
the no-remediation group and the student-choice group. Notably, the regression
model group averaged less time in the course than the all-remediation group,
but this difference was not significant.

Suppes, Fletcher, and Zanotti used regression models of achievement derived
for individual students to determine unique goals for individual students
and the amount of instructional intervention required by individual students
to reach their goals. Suppes et al. (1975a) documented a theory of student
progress from which was derived a stochastic differential equation that may
be characteristic of many curriculums. At time zero, this equation takes
the following simple form:

y(T) - a + b Tc



where y(T) represents the position )f the student in the course (Suppes et al.
take this pos.ion to be grade placement measured by a standard, paper-and-
pencil achievement test); T represents the amount of time measured by minutes
or sessions a student may spend in the course; and a, b, and c are parameters
of the model uniquely estimated for each student.

For achievement in arithmetic computation, Suppes et al. (1975a) reported
"a mean standard error of estimate of .06 in years of grade placement, with
"a range of .02 - . 2 j, when c was set to a constant value for all students
and only a and b were estimated fo- individuals. Notably, if c is constant,
the equation Is intrinsically linear in the sense of Draper and Smith (1966).
If c is allowed to vary, the equation is no longer intrinsically linear, but
it can be effectively estimated by the °olub-Pereyra algorithm (1972).

Obviously, there is room for more woxk In the application ot regression
models to achieve predictive-control in CAI. Although these models are well
understood and easy to apply and modify, they are sufficiently powerful to
satisfy many more applications than have yet been attempted. Although Rivers
used both anxiety measures and within course measures, the number of person-
ality and aptitude measures that might be entered into regression models of
performance is large and worthy of investigation. Cronbach and Snow (1969)
suggested that these entering measures may be insufficient for prescribirg
instructional intervention by themselves. However, in the context of CAI,
which can dynamically adjust to within-course performance as well as entering
course measures, the intuitive promise of aptitude-treatment interaction may
be realized. The quantitative theory of curriculum progress presented by
Suppes et al. %ras derived from qualitative principles. These principles and
the theory presented are subject to empirical scrutiny. The strength of this
theory Is its generality; it can be directly applied to a wide variety of
CAI in a straigatforward manner with a minimum of empirical tinkering.

Automaton Models of Performance

Uhat computers do and what effective procedures are may be most easily
described in tertis of automata theory (cf. Minsky, 1967; Moore, 1964). An
automaton may be described as a device with a finite number of internal states
which change in response to letters from a finite alphabet. These letters
are presented one at a time on a tape which is "read" sequentially by the
device. It seems reasonable to turn to automata theory for models of the
learner that may be easily represented by computer and that may be used in
CAI. Suppes (e.g., 1969) and Offir (1973) have discussed such applications
in detail. An impetus for these applications is Suppes' (1969) demonstration
of an asymptotic isomorphism between a given recognition automaton (Rabin,
1964) and a derivable stimulus-response model. In making this demonstration,
Suppes identified internal states of automata with tVe responses of organisms.
Different states of conditioning of the organisms were represented by dif-
ferent automata Lather than by different internal states of automata. Sets
of stimuli that maight be presented to organisms were represented naturally
and obviously by the letters of the finite alphabet recognized by the auto-
mata.

9



I

For behavioral data, it is intuitively desirable to introduce some sto-
chastic notions into automaton models of organisms. Suppes (1969) did this
by turning from deterministic automata to probabilistic automata in devising
a model for column addition of integers in which the integers and their sums
all have the 3ame numbers of digits. The power of this approach can be seen
in contrast with models based on regression. Regression models are applied
to grouped data. Thus, no matter how adequate they are for many applications
or how accurately they predict performance, they do not postulate the specific
algorithmic processes that students use in solving problems. On the other
hand, analysis of these algorithms is a natural, integral aspect of automaton
models.

Of fir (1973) presented another analysis of CAI performance data in ele-
mentary addition based on &n application of stochastic sequential machines
(Paz, 1971). The models developed by Offir are more elegant than the earlier
models devised by Suppes in that the algorithmic processes are described
more parsimoniously and are more powerful in that between-problem depend-
encies can be included. In applying these models to CAI performance data
from two-integer vertical addition problems, Offir was also able to avoid
two assumptions made by Suppes. These assumptions were that (1) if a carry
error is executed, the probability of a correct response in that column is
negligible, and (2) responses in different columns are independent.

Suppes and Flannery (in preparation, but see Suppes, 1974 or Fletcher
and Suppes, 1975) used register machine models to compare the performances
of deaf dnd hearing students on a variety of elementary arithmetic problems
presented in CAI. The results of this study derived considerable value from
the precision with which the arithmetic processes used by the learners could
be modeled. On one hand, the study demonstrated with some certainty that
objective features of the curriculum (for example, whether a vertical addition
problem has a carry or not) were processed in much the same way by both deaf
and hearing children. On the other hand, the study provided knowledge of
the arithmetic processes used by the students that could have been used to
individualize their instruction and, in so doing, would Eerve as precise models
of the learners. In any case, CAI represents a serious hope for realizing
the potential inherent in the dynamic, interactive applicatic.n cf these au-
tomaton models to instruction.

Models as Artificial Intelligence

A common complaint about quantitative models is that they are not "cog-
nitive." This complaint may stem from the lack of complexity in the behavior
the models account for, and/or from the lack of intuitive bases for the
parameters of the models. In either case, it may be reasonable to turn to
artificial intelligence for more satisfactory models of the learner.

Although they have not been addressed directly to CAI, the claims for
artificial intelligence hold considerable promise. Newell and Simon '1972)
have discussed methods such as generate and test, heuristic search, and matching
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that may be prototypal in gener..I problem solving. Newell, Shaw, and Simon
(e.g., 1960) workpd for several years on a general probler-solving computer
program. Final' lson (e.g., 1968; 1973) and Colby (e.g., 1967; 1973)
have developed c programs to model human belief systems.

In discussing hilosophlcal problems of artificial intelligence,
MLCarthy and Hayes (1969 iistinguished two aspects of intelligence-an epis-
temological part and a heuristic part. The epistemological part represents,
or models, the world so that problem solutions follow from what is represented.
The heuristic parL actually solves the problem and decides courses of action.
Most recent work in artificial intelligence has been concerned with the epis-
temological part of intelligence. Once "reality" is adequately represented,
appropriat. problems should be sufficiently well defined to facilitate deri-
vation of effective procedures, or heuristics, for solving them. McCarthy
and Hayes proceeded to distinguish metaphysically adequate representations
from epistemologically adequate representations. A representation is meta-
physically adequate if it does not contradict those aspects of reality that
are of inte-:est. It is epistemologically adequate if it does not contradict
aspects of reality that are known. What computers cannot do may hinge on
this distinction. For instance, Dreyfus' (1972) discussion of problems in
artificial intelligence seems to hinge directly on the distinction of meta-
physically adequate representations from epistemologically adequate repre-
sentations. Dreyfus' point seems to be that there is no effective procedure
for distinguishing what we need to know in some context from what we know.
This point gains importance in considering artificial intelligence approaches
to CAI.

Goldberg (1973) attempted to devise a metaphysically adequate represen-
tation by basing her approach to CAI on formally structured subject matter.
Goldberg developed a proof-interpreter for CAI in mathematical logic. This
interpreter imitated the adaptive behavior of a human tutor by supplying
relevant hints to studer.ts and by encouraging students to use diverse solution
paths. The interpreter was uscd in a CAI system that permitted a student
to specify or extend the axiomatic theory he was studying. It should be
emphasized that the hints and diverse solutions indicated by the program
were devised dynamically and interpretively; they were not pre-specified
or pre-stored. Goldberg's model of the learner, then, was basically a model
of the subject matter thac represented the learner by keeping track of the
subject matter he had mastered. In another sense, however, Goldberg's proof-
interpreter in its entirety modeled an ideal student-graduate of the course
and represented the behavior that was the goal of the instruction. Notably,
the proof-interpreter could not only complete the proofs required of students,
but it could also take a student's uwn proof steps into account as it searched
for a solution. In this sense, the proof-interpreter did not represent a
single idealized student-graduate but, rather, the ideal to which a particular
student might aspire.
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Tle limitations of Goldberg's system appear to have been along the lines
of epistemological and metaphysical adequacy discussed earlier.

Te what extent, then does the computer-based tutor
fail to perform as well as a human teacher might? Te aiswer
to this question is based on the ability of the human teacher
to leave thi present domain of discourse and to borrow freely
from general sources of knowledge. The human teacher can
let the student ask general questions, and can devise illus-
trations from other subject areas in order to help the student
understand the answer to his query. The human teacher is
not as restricted, as is the present computer-tutor, in
formulating the tutorial dialogue, or in allowing inter-
ruptions from the student which could be useful in inferring
problems the student may be experiencing (p. 256).

The strengths of the system are powerful and obvious. It never errs, misleads,
or ignores progress made by the student; it is infinitely patient; and it
serves many students simultaneously.

Several other CAI projects have been based on metaphysically adequate
models of formally structured subject matter. Brown, Burton, and Bell (1974)
devised a computer representation of electronic equipment that both supported
CAI and revealed operating characteristics of the equipment that had not been
anticipated by the manufacturer. Barr, Beard, and Atkinson (1975) are at-
tempting to develop CAI techniques to judge the semantic correctness of
student-written computer programs based on a representation of the BASIC
computer languape. Finally, work reported by Collins, Warnock, and Passafiume
(1974) supports mixed-initiative CAI based on a representation of South
American geography. This type of CAI is called mixed-initiative because
inquiries can be initiated by either the student or the computer. It is
reasonable to expect increasing use of subject matter models in CAI. Clearly
one way to devise adequate models of the learner is to start with an adequate
model of the subject matter and "shade it in" as an individual masters given
aspects of it. A useful review of some of this work was presented by Self
(1974).

Another approach is to model human belief structures directly. Colby,
at Stanford, and Abelson, at Yale, have been investigating computer simulations
of human belief systems for several years. Colby's original intention was
to simulate neurotic belief systems and the change they might undergo during
psychotherapy (cf. Colby, 1967). This resembles what we would like to see
in CAI. A belief system in both Colby's and Abelson's formulations is a
set of interdependent concepts which could reflect the status of a student
and the changes in his belief system or concept structure that might result
from instructional intervention. Such a system could simulate the effects
of instruction on a student so that the best instructional alternatives might
be chosen for given objectives. As Colby has pointed out (1973), the dif-
ficulties of these tasks have limited him to the first, epistemological part--
modeling the belief systems. Evidently, both Colby and Abeison have suspended
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work on the heuristic part concerned with changes in the system. Applicatiuns
of these models to CAI as, perhaps, criterion-referenced representations of
the learner are ctill desirable and, based on the evider.ce, possible. Colby's
success in modeling a paranoid belief system is attested by a verification
experiment reported by Colby, Hilf, Weber, and KraeLmer (1972). In a teat
based on Turing's (1950) suggestions, therapy protocols from computer models
of strong and weak parar.oia and from human patients exhibiting paranoia were
compared by practicing psychiatrists. None of the psychiatrists were aware
that a computer model of paranoia was involved. The psychiatrists rated the
strong version of the computer model significantly higher in patranoia than
the human patients, and the weak version of the computer model significantly
lowec .n paranoia than the human patients.

Abelscn (cf. 1973) has taken a more theoretical approach to the problem,
basing his techmiques on work in computer understanding of natural language
concepts by Shank (e.g., 1972). This work holds great promise, both with
respect to the espistemological and metaphysical adequacy of the represen-
tations it may produce and with respect to the heuristics for change that
should result. Abelson's model of a human belief system, the Cold Warrior,
has indicated a problem that is easy to understand and difficult to solve.
As he has said, "there can be no veridical simulation of a be.ief system
on a small scale [1973, p. 3381." Given all that must be represented as
discrete facts and all the interrelations between these facts, a metaphys-
ically adequate representation of a L-iman belief system turns out to be
enormous. However, a metaphysically adequate belief system for an instruc-
tional subject may be much simpler and smaller than a paranoid or a Cold
Warrior belief system. As evidenced by the work of Goldberg and others (e.g.,
"Kimball, 1973), the existing structure of instructional subject matter may
lead to metaphysically adequate computer representations that lend themselves
to relatively facile derivation of heuristics for the dynamics of instruction.

Overall, there appears to be useful progress on two fronts: (1) devising
models of subject matter that, in turn, can model learners, and (2) modeling
belief systems. Additionally, there are a few attempts to directly model
human cognftion in learn-.ng. Most of this activity stems from the early,
"influential development of EPAM (Elementary Perceiver and Memorizer) by Simon
and Feigenbaum (e.g., 1964). EPAM is a computer program designeo to act as
a human subject in rote learning experiments. Its success has been substantial,
and its behavior has been shown to be similar to that of human subjects in
a variety of activities (e.g., Gregg and Simon, 1967; McLean and Gregg, 1967).
EPA?' might be used successfully to prescribe instruction for learners based
on its "understanding" of their learning status, but an application of this
sort has not been attempted. Hopefully, efforts of this sort based on the
new models of human cognition are forthcoming.
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Final Comment

It should be emphasized that attempts to devise adequate models of the
learner are necessarily myopic. A truly adaptive instructional system must
not only teach but learn. Such a system must embody models, procedures f,'r
hypothesis testing, and controls. The models provide formal represencations
of tho subject matter, the learner, and their interaction. The procedur'es
for hypothescs testing allow the system to draw conclusions concerning the
behavioral characteristics of the learner. Finally, the controls enable
the system to effect desired behavioral changes in the learner to accord
with specified instructional objectives. A thorough discussion of these
issues was recently prepared by Offir (1975).
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CO'JCI.W: I' 1 .

Implicit ii. this review is the assumptlion that explicit representations
of the learner should be applied in CAI. Instruction does not merely deposit
information on blank slates. Students comprise complex, dynamic systems
that are altered by instruction, and we ner.d models for translating these

systems to the effective procedures necese;ary for computer representations.

"Presumably, the better we explicate these student/systems, the better we
can devise, modify, evaluate, and individualize instruction. ioreovero the

approaches to instruction discussed by tnis -,aper use to advantage the power,

speed, and accuracy of computers, and, in doing so, illustrate a uatique and

valuable capability of computers applied to instruction.

No general recommendations can be rade concerning the approaches reviewed
by this report. :k3dels of memory support optimization of instruction, regres-
sion models promise wide applicability and the inclusion of supplementary

information such as those of aptitude and personality characteristics' automaton

models support direct investigation of the cognitive processes underlying pro-

blem solving b': learners, and artificial intelligence techniques may provide

the most complete representation of what the learner knows and does not know.

Wnich of these approaches should be pursued will depend on the interests, goals,

and capabilities of those investigating them.
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